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Abstract. Let a pair (A,B) of bounded linear operators acting on a Hilbert space be a solution of the
operator equations ABA = A2 and BAB = B2. When A is a paranormal operator, we explore some behaviors
of the operators AB, BA, and B. In particular, if A or A∗ is a polynomial root of paranormal operators, we
show that Weyl type theorems are satisfied for the operators AB, BA, and B.

1. Introduction

LetH be an infinite dimensional separable Hilbert space and let B(H), B0(H) denote, respectively, the
algebra of bounded linear operators, the ideal of compact operators acting onH . If T ∈ B(H), we shall write
N(T) and R(T) for the null space and range of T. Also, let α(T) := dimN(T), β(T) := dimN(T∗), and let σ(T),
σa(T), σs(T), σp(T), p0(T), and π0(T) denote the spectrum, approximate point spectrum, surjective spectrum,
point spectrum of T, the set of poles of the resolvent of T, and the set of all eigenvalues of T which are
isolated in σ(T), respectively. For T ∈ B(H), the smallest nonnegative integer p such that N(Tp) = N(Tp+1)
is called the ascent of T and denoted by p(T). If no such integer exists, we set p(T) = ∞. The smallest
nonnegative integer q such that R(Tq) = R(Tq+1) is called the descent of T and denoted by q(T). If no such
integer exists, we set q(T) = ∞.

Recall that T ∈ B(H) is hyponormal if T∗T ≥ TT∗ and T is paranormal if

‖Tx‖2 ≤ ‖T2x‖‖x‖ for all x ∈ H .

An operator T is said to be isoloid if every isolated point of σ(T) is an eigenvalue of T, and T is called
normaloid if ‖T‖ = r(T), where r(T) is the spectral radius of T.

It is well known that hyponormal operators imply paranormal operators, and paranormal operators
entail a polynomial roots of paranormal operators. They are preserved under translation by scalars and
under restriction to invariant subspaces. Moreover, it is easily shown that if T ∈ B(H) is a polynomial root
of paranormal operators, then it has SVEP from [1, Theorem 2.40]. The following facts follows from the
above definition and some well known facts about paranormal operators.

(i) Every paranormal operator is isoloid and normaloid
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(ii) If T is paranormal and invertible, then T−1 is paranormal.
(iii) Every quasinilpotent paranormal operator is a zero operator.
(iv) T is paranormal if and only if T2∗T2

− 2λT∗T + λ2
≥ 0 for all λ > 0.

Let (A,B) be a solution of the system of operator equations

ABA = A2 and BAB = B2. (1.1)

In [19], I. Vidav proved that A and B are self-adjoint operators satisfying the operator equations (1.1) if and
only if A = PP∗ and B = P∗P for some idempotent operator P. Also, the common spectral properties of
the operators A and B satisfying the operator equations (1.1) have been studied by C. Schmoeger [17]. In
particular, it is possible to relate the several spectrums, the single-valued extension property and Bishop’s
property (β) of A and B, which has been carried out by [12]. So, we are interested in the following question :

When A is paranormal, is it possible that the operator equations (1.1)
preserve the properties of paranormal operators?

We start our program with the following section.

2. Preliminaries

An operator T ∈ B(H) is called upper semi-Fredholm if it has closed range and finite dimensional null space
and is called lower semi-Fredholm if it has closed range and its range has finite co-dimension. If T ∈ B(H) is
either upper or lower semi-Fredholm, then T is called semi-Fredholm, and index of a semi-Fredholm operator
T ∈ B(H) is defined by

i(T) := α(T) − β(T).

If both α(T) and β(T) are finite, then T is called Fredholm. T ∈ B(H) is called Weyl if it is Fredholm of index
zero. For T ∈ B(H) and a nonnegative integer n define Tn to be the restriction of T to R(Tn) viewed as a
map from R(Tn) into R(Tn) (in particular T0 = T). If for some integer n the range R(Tn) is closed and Tn is
upper (resp. lower) semi-Fredholm, then T is called upper (resp. lower) semi-B-Fredholm. Moreover, if Tn is
Fredholm, then T is called B-Fredholm. T is called semi-B-Fredholm if it is upper or lower semi-B-Fredholm.

Definition 2.1. Let T ∈ B(H) and let ∆(T) := {n ∈N : m ∈N and m ≥ n⇒ (R(Tn)∩N(T)) ⊆ (R(Tm)∩N(T))}.
Then the degree of stable iteration dis(T) of T is defined as dis(T) := inf ∆(T).

Let T be semi-B-Fredholm and let d be the degree of stable iteration of T. It follows from [8, Proposition
2.1] that Tm is semi-Fredholm and i(Tm) = i(Td) for each m ≥ d. This enables us to define the index of semi-B-
Fredholm T as the index of semi-Fredholm Td. Let BF(H) be the class of all B-Fredholm operators. In [5] they
studied this class of operators and they proved [5, Theorem 2.7] that an operator T ∈ B(H) is B-Fredholm
if and only if T = T1 ⊕ T2, where T1 is Fredholm and T2 is nilpotent. It appears that the concept of Drazin
invertibility plays an important role for the class of B-Fredholm operators. Let A be a unital algebra. We
say that an element x ∈ A is Drazin invertible of degree k if there exists an element a ∈ A such that

xkax = xk, axa = a, and xa = ax.

Let a ∈ A. Then the Drazin spectrum is defined by

σD(a) := {λ ∈ C : a − λ is not Drazin invertible}.

It is well known that T is Drazin invertible if and only if it has finite ascent and descent, which is also
equivalent to the fact that

T = T1 ⊕ T2, where T1 is invertible and T2 is nilpotent.
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An operator T ∈ B(H) is called B-Weyl if it is B-Fredholm of index 0. The B-Fredholm spectrum σBF(T) and
B-Weyl spectrum σBW(T) of T are defined by

σBF(T) := {λ ∈ C : T − λ is not B-Fredholm},

σBW(T) := {λ ∈ C : T − λ is not B-Weyl}.

Now we consider the following sets:

BF+(H) := {T ∈ B(H) : T is upper semi-B-Fredholm},
BF−+(H) := {T ∈ B(H) : T ∈ BF+(H) and i(T) ≤ 0},

LD(H) := {T ∈ B(H) : p(T) < ∞ and R(Tp(T)+1) is closed}.

By definition,
σea(T) := ∩{σa(T + K) : K ∈ B0(X)}

is the essential approximate point spectrum,

σab(T) := ∩{σa(T + K) : TK = KT and K ∈ B0(X)}

is the Browder essential approximate point spectrum,

σBea(T) := {λ ∈ C : T − λ < BF−+(H)},

is the upper semi-B-essential approximate point spectrum and

σLD(T) := {λ ∈ C : T − λ < LD(H)}

is the left Drazin spectrum. It is well known that

σBea(T) ⊆ σLD(T) = σBea(T) ∪ acc σa(T) ⊆ σBW(T) ⊆ σD(T),

where we write acc K for the accumulation points of K ⊆ C. If we write iso K := K \ acc K then we let

π00(T) := {λ ∈ iso σ(T) : 0 < α(T − λ) < ∞ },

πa
00(T) := {λ ∈ iso σa(T) : 0 < α(T − λ) < ∞ },

p00(T) := σ(T) \ σb(T),

pa
00(T) := σa(T) \ σab(T),

pa
0(T) := {λ ∈ σa(T) : T − λ ∈ LD(X)}, and

πa
0(T) := {λ ∈ iso σa(T) : λ ∈ σp(T)}.

We say that Weyl’s theorem holds for T ∈ B(H), in symbols (W), if σ(T) \ σw(T) = π00(T), Browder’s theorem
holds for T ∈ B(H), in symbols (B), if σ(T) \ σw(T) = p00(T), a-Weyl’s theorem holds for T , in symbols (aW),
if σa(T) \ σea(T) = πa

00(T), and a-Browder’s theorem holds for T, in symbols (aB), if σa(T) \ σea(T) = pa
00(T). The

following variants of Weyl’s theorem has been introduced in [7] and [8].

Definition 2.2. Let T ∈ B(H).
(1) Generalized Weyl’s theorem holds for T (in symbols, T ∈ 1W) if σ(T) \ σBW(T) = π0(T).
(2) Generalized Browder’s theorem holds for T (in symbols, T ∈ 1B) if σ(T) \ σBW(T) = p0(T).
(3) Generalized a-Weyl’s theorem holds for T (in symbols, T ∈ 1aW) if σa(T) \ σBea(T) = πa

0(T).
(4) Generalized a-Browder’s theorem holds for T (in symbols, T ∈ 1aB) if σa(T) \ σBea(T) = pa

0(T).
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It is known ([7]) that the following relations hold:

1a-Weyl’s theorem =⇒ 1a-Browder’s theorem

⇓ ⇓

1-Weyl’s theorem =⇒ 1-Browder’s theorem

⇓ ⇓

Weyl’s theorem =⇒ Browder’s theorem

In terms of local spectral theory ([1], [14]) recall that an important subspace H0(T) is the quasi-nilpotent
part of T defined by

H0(T) := {x ∈ H : lim
n→∞
||Tnx||

1
n = 0}.

If T ∈ B(H), then the analytic core K(T) is the set of all x ∈ H such that there exists a constant c > 0 and a
sequence of elements xn ∈ H such that x0 = x, Txn = xn−1, and ||xn|| ≤ cn

||x|| for all n ∈N. Given an arbitrary
T ∈ B(H) on a Hilbert spaceH , the local resolvent set ρT(x) of T at the point x ∈ H is defined as the union of
all open subsets U of C for which there is an analytic function f : U→H which satisfies (T−λ) f (λ) = x for
all λ ∈ U. The local spectrum σT(x) of T at the point x ∈ H is defined as σT(x) := C \ ρT(x). We define the local
spectral subspaces of T by

HT(F) := {x ∈ H : σT(x) ⊆ F} for all sets F ⊆ C.

We say that T ∈ B(H) has the single valued extension property at λ0 ∈ C (abbreviated SVEP at λ0) if for
every open neighborhood U of λ0 the only analytic function f : U −→ H which satisfies the equation

(T − µ) f (µ) = 0

is the constant function f ≡ 0 on U. The operator T is said to have SVEP if T has SVEP at every λ0 ∈ C.
Evidently, every operator T, as well as its dual T∗, has SVEP at every point of the boundary ∂σ(T) of the
spectrum σ(T), in particular, at every isolated point of σ(T). We also have (see [1, Theorem 3.8])

p(T − λ) < ∞ =⇒ T has SVEP at λ, (2.1)

and dually

q(T − λ) < ∞ =⇒ T∗ has SVEP at λ. (2.2)

It is well known from [1] that if T−λ is semi-Fredholm, then the implications (2.1) and (2.2) are equivalent.

3. Main Results

Let a pair (A,B) denote the solution of the operator equations (1.1) throughout this paper. We explore some
properties of a solution (A,B) of (1.1). In particular, when A is paranormal, B need not be a paranormal

operator in general. For example, let P =

(
I 0
0 0

)
and Q =

(
I 0
I 0

)
in B(H ⊕H). Then P2 = P and Q2 = Q.

If A := PQ and B := QP, then (A,B) is a solution of the operator equations (1.1). Since B∗ =

(
I I
0 0

)
, a

straightforward calculation shows that

B2∗B2
− 2λB∗B + λ2I =

(
(2 − 4λ + λ2)I 0

0 λ2I

)
,
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But, (2 − 4λ + λ2)I is not a positive operator for λ = 1, hence we obtain that for some λ > 0,

B2∗B2
− 2λB∗B + λ2 � 0.

Therefore B is neither paranormal nor normal. On the other hand, A is normal, so that it is a paranormal
operator. From this, A is normaloid, however B need not be normaloid. In fact, σ(B) = {0, 1}, so that r(B) = 1.
But, ‖B‖ =

√
2, hence B is not normaloid.

Let’s consider another example. If P =

(
I 2I
0 0

)
and Q =

(
I 0
0 0

)
are in B(H ⊕H), then both P and Q are

idempotent operators. Also, A := PQ and B := QP satisfy the operator equations (1.1). Since B∗A∗ =

(
I 0

2I 0

)
,

a straightforward calculation shows that

(AB)2∗(AB)2
− 2λ(AB)∗(AB) + λ2I =

(
(1 − 2λ + λ2)I (2 − 4λ)I

(2 − 4λ)I (4 − 8λ + λ2)I

)
.

However, (4− 8λ+λ2)I is not a positive operator for λ = 1, hence AB is neither paranormal nor normal. On
the other hand, A is normal, so that it is a paranormal operator.

We now investigate some behaviors of the operators AB, BA and B whenever A ∈ B(H) is a paranormal
operator. We start with the following theorem.

Theorem 3.1. Let A be a paranormal operator onH and N(A) = N(AB).
(1) If dimH < ∞, then AB is a normal operator.
(2) If dimH < ∞ and N(A−λ) = N(B−λ) for each λ ∈ C, then all of A, AB, BA, and B are normal operators.

Proof. Since σp(AB) = σp(A) and N(AB − λ) = N(A − λ) from [12],

K :=
∑

λ∈σp(AB)

N(AB − λ) =
∑

λ∈σp(A)

N(A − λ).

Since A is paranormal and dimH < ∞, it is known thatK reduces A. So we can represent A as follows :

A =

(
A1 0
0 A2

)
: K ⊕K⊥ −→ K ⊕K⊥.

Assume that K⊥ , {0}. Then A2 = A|K⊥ is also paranormal. Since dim K⊥ < ∞, σp(A2) , ∅. Thus for any
λ ∈ σp(A2), there exists a nonzero xλ ∈ K⊥ such that λxλ = A2xλ = Axλ. Hence xλ ∈ K . But, xλ ∈ K⊥, hence
xλ = 0, which is a contradiction. ThereforeK⊥ = {0}, which implies thatH = K . So for each x ∈ H ,

x =
∑

λ∈σp(A)

xλ =
∑

λ∈σp(AB)

xλ for some xλ ∈ N(A − λ).

This implies that
ABx =

∑
λ∈σp(AB)

λxλ =
∑

λ∈σp(A)

λxλ = Ax.

On the other hand, since A∗B∗A∗ = A∗2 and B∗A∗B∗ = B∗2,

B∗A∗x = A∗x =
∑

λ∈σp(A)

λ̄xλ =
∑

λ∈σp(AB)

λ̄xλ.

Therefore
‖ABx‖2 =

∑
λ∈σp(AB)

‖λxλ‖2 =
∑

λ∈σp(AB)

|λ|2‖xλ‖2 =
∑

λ∈σp(AB)

‖λ̄xλ‖2 = ‖B∗A∗x‖2,
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so that AB is normal. Thus (1) is valid. From [17] and N(A − λ) = N(B − λ) for each λ ∈ C, we note that

N(A − λ) = N(AB − λ) = N(BA − λ) = N(B − λ)

for every λ ∈ C. Thus (2) is obvious by the similar process as above. �

Given T ∈ B(H) and S ∈ B(K ) for Hilbert spaces H and K , the commutator C(S,T) ∈ B(B(H ,K )) is the
mapping defined by

C(S,T)(A) := SA − AT for all A ∈ B(H ,K ).

The iterates C(S,T)n of the commutator are defined by C(S,T)0(A) := A and

C(S,T)n(A) := C(S,T)(C(S,T)n−1(A)) for all A ∈ B(H ,K ) and n ∈N;

they are often called the higher order commutators. There is the following binomial identity. It states that

C(S,T)n(A) =

n∑
k=0

(
n
k

)
(−1)kSn−kA Tk,

which is valid for all A ∈ B(H ,K ) and all n ∈N ∪ {0}.
The following corollary illustrates that the higher order commutator equations C(A,X)n(A∗) = 0 with all

n ∈N have a solution αAB + (1 − α)A for a real number α.

Corollary 3.2. Let A be paranormal with N(A) = N(AB). If dim H < ∞ and α is a real number, then the
following statements hold :
(1) αAB + (1 − α)A is a solution X of the operator equations C(A,X)n(A∗) = 0 for all n ∈N.
(2) σA(A∗x) ⊆ σαAB+(1−α)A(x) for all x ∈ H .
(3) A∗HαAB+(1−α)A(F) ⊆ HA(F) for every set F in C.

Proof. (1) Since (A,B) is a solution of the operator equation ABA = A2, it holds that [αAB + (1 − α)A]Y = YA
where Y := A. By Theorem 3.1 it is known that AB and A are normal. Since (αAB)Y = αABA = αA2 =
αYA = Y(αA) and AB is normal, it follows from Fuglede-Putnam theorem that (αAB)∗Y = Y(αA)∗, so that

[αAB + (1 − α)A]∗Y = Y(αA)∗ + Y[(1 − α)A]∗ = YA∗, (3.1)

which implies that C(A,X)n(A∗) =
∑n

k=0

(
n
k

)
(−1)kAnA∗ = 0.

(2) Ifλ0 < σX(x), then there exists an analytic function f : D→H defined on D a neighborhood ofλ0 such
that (X − µ) f (µ) ≡ x for every µ ∈ D. So A∗(X − µ) f (µ) ≡ A∗x. It follows from (3.1) that (A − µ)A∗ f (µ) ≡ A∗x.
Therefore λ0 ∈ ρA(A∗x), so that λ0 < σA(A∗x).

(3) Let F be any set in C and x ∈ HX(F) where X = αAB + (1 − α)A for real numbers α. Then σX(x) ⊆ F.
From this part (2), σA(A∗x) ⊆ F. Therefore A∗x ∈ HA(F). Hence we complete our proof. �

Proposition 3.3. The following statements are satisfied.
(1) Suppose A ∈ B(H) is a paranormal weighted shift defined by Aen = wnen+1 for n = 0, 1, 2, · · · , where
wn , 0 for all n ≥ 1. If ABe0 = w0e1, then AB is hyponormal.
(2) Suppose B ∈ B(H) is a paranormal weighted shift defined by Ben = wnen+1 for n = 0, 1, 2, · · · , where
wn , 0 for all n ≥ 1. If BAe0 = w0e1, then BA is hyponormal.

Proof. Assume that A is a paranormal weighted shift defined by Aen = wnen+1 for n = 0, 1, 2, · · · . Then {|wn|}

is an increasing sequence. Moreover,

wnABen+1 = ABAen = A2en = wnwn+1en+2,



I. J. An, E. Ko / Filomat 29:6 (2015), 1195–1207 1201

so that ABen+1 = wn+1en+2 for n = 0, 1, 2, · · · . But, ABe0 = w0e1 and |w0| ≤ |w1|, thus AB is hyponormal. So (1)
is valid. Symmetrically, (2) is also satisfied. �

It is well known that every quasinilpotent paranormal operator is a zero operator. We apply this fact to
a solution (A,B) of the operator equations (1.1).

Lemma 3.4. Let A be a paranormal operator and σ(A) = {λ}. Then the following statements hold.
(1) If λ = 0, then B2 = 0.
(2) If λ , 0, then λ = 1 and A = B = I.

Proof. If λ = 0, then it follows from [10, Lemma 2.1] that B2 = 0. So (1) is valid.
Suppose that λ , 0. Since A is paranormal, A = λI. Since ABA = A2, we have that λ2(B − I) = 0, so that

B = I. Also, if BAB = B2, then (λ − 1)B2 = 0 and λ = 1. Therefore σ(A) = σ(B) = {1}, which implies that
A = B = I. �

From Lemma 3.4, we immediately have the following remark.

Remark 3.5. Let A be a paranormal operator. Then we have the following.
(1) If A is quasinilpotent, then AB, BA, and B are nilpotent.
(2) If A − I is quasinilpotent, then B is the identity operator, that is, AB − λ, BA − λ, and B − λ are invertible
for all λ ∈ C \ {1}.

Uchiyama [18] showed that if T ∈ B(H) is a paranormal operator and λ0 is an isolated point of σ(T), then
the Riesz idempotent Eλ0 (T) := 1

2πi

∫
∂D(λ−T)−1dλ, where D is the closed disk of center λ0 which contains no

other points of σ(T), satisfies R(Eλ0 (T)) = N(T −λ0). Here, if λ0 , 0, then Eλ0 (T) is self-adjoint and N(T −λ0)
reduces T. From this, we obtain the next corollary.

Corollary 3.6. If A is a paranormal operator, then iso σ(T) ⊆ {0, 1}where T ∈ {A,AB,BA,B}.

Proof. Let λ0 be a nonzero isolated point of σ(A). Using the Riesz idempotent Eλ0 (A) with respect to λ0, we
can represent A as the direct sum

A =

(
A1 0
0 A2

)
, where σ(A1) = {λ0} and σ(A2) = σ(A) \ {λ0}.

Since A1 is also paranormal, it follows from Lemma 3.4 that λ0 = 1. This means that iso σ(T) ⊆ {0, 1} where
T ∈ {A,AB,BA,B}. �

Furthermore, we observe the following lemmas.

Lemma 3.7. If A is paranormal and λ0 is a nonzero isolated point of σ(AB), then for the Riesz idempotent
Eλ0 (A) with respect to λ0, we have that

R(Eλ0 (A)) = N(AB − λ0) = N(A∗B∗ − λ0).

Proof. Since A is paranormal and λ0 ∈ iso σ(A)\ {0}, by [18, Theorem 3.7], R(Eλ0 (A)) = N(A−λ0) = N(A∗−λ0)
for the Riesz idempotent Eλ0 (A) with respect to λ0. But, a pair (A,B) is a solution of the operator equations
ABA = A2 and BAB = B2, hence by [17, Corollary 2.2],

N(A − λ0) = N(AB − λ0) and N(A∗ − λ0) = N(A∗B∗ − λ0),

for λ0 , 0. Therefore this completes the proof. �
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Notation 3.8. We denote the set C by the collection of every pair (A,B) of operators as the following:
C := {(A,B) : A and B are solutions of the operator equations (1.1) with

N(A − λ) = N(B − λ) for λ , 0}.

Then we have the following result.

Lemma 3.9. Suppose that (A,B) ∈ C and A is paranormal. If λ0 ∈ iso σ(BA) \ {0}, then for the Riesz
idempotent Eλ0 (A) with respect to λ0, we have that

R(Eλ0 (A)) = N(BA − λ0) = N(A∗B∗ − λ0).

Proof. Since (A,B) ∈ C and A is paranormal, it follows from [17, Corollary 2.2] and Lemma 3.7 that
N(BA − λ0) = N(AB − λ0) = N(A∗B∗ − λ0) for λ0 ∈ iso σ(BA) \ {0}. Hence this completes the proof. �

From these arguments, we obtain the following result.

Proposition 3.10. Let (A,B) ∈ C and A be a paranormal operator.
(1) If λ0 is a nonzero isolated point of σ(BA), then the range of BA − λ0 is closed.
(2) If B∗ is injective and λ0 ∈ iso σ(T) \ {0}, then N(T − λ0) reduces T, where T ∈ {AB,B}.

Proof. (1) Let λ0 be a nonzero isolated point of σ(BA). Then it follows form Corollary 3.6 that iso σ(BA) ⊆ {1}.
If iso σ(BA) = ∅, then it is obvious. Thus we only consider the case which 1 is an isolated point of σ(BA).
Since ABA = A2 and BAB = B2, by [17], 1 is an isolated point of σ(A). Using the Riesz idempotent E1(A)
with respect to 1, we can represent A as the direct sum

A =

(
A1 0
0 A2

)
, where σ(A1) = {1} and σ(A2) = σ(A) \ {1}.

Since (A,B) ∈ C and A is paranormal, by Lemma 3.9,

H = R(E) ⊕ R(E)⊥ = N(BA − I) ⊕N(BA − I)⊥,

which implies that

BA =

(
C1 0
0 C2

)
, where σ(C1) = {1} and σ(C2) = σ(BA) \ {1}.

Since A1 and C1 are the restrictions of A and BA to R(E1(A)), respectively, we note that if B1 := B|R(E1(A)),
then A1B1A1 = A2

1 and B1A1B1 = B2
1. Since A1 is paranormal, it follows from Lemma 3.4 that C1 = I. Thus

BA − I = 0 ⊕ (C2 − I),

so that
R(BA − I) = (BA − I)(H) = 0 ⊕ (C2 − I)(N(BA − I)⊥).

Since C2 − I is invertible, BA − I has the closed range.
(2) Since a pair (A∗,B∗) is a solution of the operator equations A∗B∗A∗ = A∗2 and B∗A∗B∗ = B∗2 and B∗ is

injective, A∗B∗ = B∗. But, (A,B) ∈ C, hence it follows from Lemma 3.7 and Lemma 3.9 that for the Riesz
idempotent Eλ0 (A),

R(Eλ0 (A)) = N(T − λ0) = N(T∗ − λ0),

where T ∈ {AB,B}. This completes the proof. �

It was shown by [13, Lemma 1] that for every λ ∈ π00(T), HT({λ}) is finite dimensional if and only if
R(T − λ) is closed. Furthermore we can easily prove from [17] that

π00(A) \ {0} = π00(AB) \ {0} = π00(BA) \ {0} = π00(B) \ {0}.

Hence we have the following results from these arguments and Proposition 3.10.
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Corollary 3.11. Let (A,B) ∈ C and A be a paranormal operator. If λ0 ∈ π00(BA) \ {0}, thenHBA({λ0}) is finite
dimensional.

Remark 3.12. Let (A,B) ∈ C and one of A, BA, AB, or B be paranormal. If λ0 is a nonzero isolated point
in the spectrum of one of them, then all of the ranges of A − λ0, BA − λ0, AB − λ0, and B − λ0 are closed.
Moreover, if λ0 is a nonzero isolated eigenvalue of the spectrum of one of them with finite multiplicity, then
all of the spectral manifoldsHA({λ0}),HAB({λ0}),HBA({λ0}), andHB({λ0}) are finite dimensional.

It is well known that every paranormal operators satisfy generalized Weyl’s theorem [11], so that they
have Weyl’s theorem. Now, we would like to study that if A is paranormal, then Weyl’s theorem holds
for T, where T ∈ {AB,BA,B}. More generally, we study that if A or A∗ is a polynomial root of paranormal
operators, then generalized Weyl’s theorem holds for f (T) for f ∈ H(σ(T)), where T ∈ {AB,BA,B}. We start
with the following lemma.

Lemma 3.13. We have the following properties :
(1) π0(A) = π0(AB) = π0(BA) = π0(B).
(2) A is isoloid if and only if AB is isoloid if and only if BA is isoloid if and only if B is isoloid.

Proof. By [17] and [12, Lemma 2.3], it was known that σ(A) = σ(AB) = σ(BA) = σ(B) and σp(A) = σp(AB) =
σp(BA) = σp(B). Thus (2) is valid. Also, it follows that for all λ ∈ C,

α(A − λ) > 0⇔ α(AB − λ) > 0⇔ α(BA − λ) > 0⇔ α(B − λ) > 0,

which means that (1) is satisfied. �

Theorem 3.14. Suppose that A or A∗ is a polynomial root of paranormal operators. Then f (T) ∈ 1W for
each f ∈ H(σ(T)), where T ∈ {AB,BA,B}.

Proof. Suppose that A is a polynomial root of paranormal operators. Let T ∈ {AB,BA,B}. We first show
that T satisfies generalized Weyl’s theorem. Suppose that λ ∈ σ(T) \ σBW(T). Then T − λ is B-Weyl but not
invertible. It follows from [6, Lemma 4.1] that we can represent T − λ as the direct sum

T − λ =

(
T1 0
0 T2

)
, where T1 is Weyl and T2 is nilpotent.

Since A is a polynomial root of paranormal operators, by [12, Theorem 2.1], T has SVEP. This implies that
T1 has SVEP at 0. However, T1 is Weyl, hence T1 has finite ascent and descent. From this, T − λ has finite
ascent and descent. So λ ∈ π0(T).

Conversely, suppose that λ ∈ π0(T). Then λ ∈ π0(A) by Lemma 3.13. But, A is a polynomial root of
paranormal operators, hence A ∈ 1B by [11, Theorem 4.14]. Therefore λ is a pole of the resolvent of A, so
that T − λ is Drazin invertible by [12, Theorem 2.11]. Thus we can represent T − λ as the direct sum

T − λ =

(
T1 0
0 T2

)
, where T1 is invertible and T2 is nilpotent.

Therefore T − λ is B-Weyl, and so λ ∈ σ(T) \ σBW(T). Thus σ(T) \ σBW(T) = π0(T), and hence T ∈ 1W.
Next we claim that σBW( f (T)) = f (σBW(T)) for each f ∈ H(σ(T)). Since T ∈ 1W, T ∈ 1B. It follows from

[11, Theorem 2.1] that σBW(T) = σD(T). Since A is a polynomial root of paranormal operators, T has SVEP,
so that f (T) has SVEP for each f ∈ H(σ(T)). Hence f (T) ∈ 1B by [11, Theorem 2.9]. Therefore we have that

σBW( f (T)) = σD( f (T)) = f (σD(T)) = f (σBW(T)).
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Since A is a polynomial root of paranormal operators, it follows from [10, Lemma 2.3] that A is isoloid,
equivalently, so is T by Lemma 3.13. From this, for each f ∈ H(σ(T)),

σ( f (T)) \ π0( f (T)) = f (σ(T) \ π0(T)).

Since T ∈ 1W, we have

σ( f (T)) \ π0( f (T)) = f (σ(T) \ π0(T)) = f (σBW(T)) = σBW( f (T)),

which implies that f (T) ∈ 1W.
Now we suppose that A∗ is a polynomial root of paranormal operators. We first show that T ∈ 1W. Let

λ ∈ σ(T)\σBW(T). Observe that σ(T∗) = σ(T) and σBW(T∗) = σBW(T). So λ ∈ σ(T∗)\σBW(T∗). But, A∗B∗A∗ = A∗2

and B∗A∗B∗ = B∗2, hence T∗ ∈ 1W. So λ ∈ p0(T∗), which implies that λ ∈ p0(A∗). Since A∗ is a polynomial
root of paranormal operators, λ is a pole of the resolvent of A∗, equivalently, λ is a pole of the resolvent of
T. Thus λ ∈ π0(T).

Conversely, suppose λ ∈ π0(T). Then λ ∈ π0(A). Since λ ∈ iso σ(A∗) and A∗ is a polynomial root
of paranormal operators, λ is a pole of the resolvent of A, so that T − λ is Drazin invertible. Hence
λ ∈ σ(T) \ σBW(T). Thus σ(T) \ σBW(T) = π0(T), so that T ∈ 1W. If A∗ is a polynomial root of paranormal
operators, then T is isoloid by Lemma 3.13. It follows from the first part of the proof that f (T) ∈ 1W. This
completes the proof. �

Corollary 3.15. Suppose that (A,B) ∈ C and A is a compact paranormal operator. Then we have that

BA =

(
I 0
0 Q

)
on N(BA − I) ⊕N(BA − I)⊥,

where Q is quasinilpotent.

Proof. Suppose that A is compact and paranormal. Then BA satisfies generalized Weyl’s theorem by
Theorem 3.14. Also, iso σ(BA) ⊆ {0, 1} by Corollary 3.6. Thus it is satisfied that

σ(BA) \ σBW(BA) ⊆ {0, 1}. (3.2)

Assume that σBW(BA) is not finite. Then σ(BA) is infinite from (3.2). Since A is compact, σ(BA) is countable.
Set σ(BA) := {0, λ1, λ2, · · · }, where λ j , 0 for j = 1, 2, · · · , λi , λ j for every i , j, and λ j → 0 as j→ ∞. Then
{λ1, λ2, · · · } ⊆ iso σ(BA) \ {0} ⊆ {1} by Corollary 3.6. But, this is a contradiction. Hence σBW(BA) is finite. This
means that every point in σBW(BA) is isolated. So σ(BA) ⊆ {0, 1}. If 1 < σ(BA), then σ(BA) = {0}. Since A is
paranormal, it follows from [10, Lemma 2,1] that A = 0, so that BA = 0. If 1 ∈ σ(BA), then by the proof of
Proposition 3.10, BA = I ⊕ Q onH = N(BA − I) ⊕ N(BA − I)⊥, where σ(Q) = {0}. This completes the proof.
�

Now, we investigate that if A or A∗ is a polynomial root of paranormal operators, then a-Browder’s
theorem holds for f (T), where f ∈ H(σ(T)) and T ∈ {AB,BA,B}. For that, we first need the following lemma.

Lemma 3.16. Let T ∈ {AB,BA,B}. If A or A∗ is a polynomial root of paranormal operators, then we have the
following equalities for every f ∈ H(σ(T)).
(1) σea( f (T)) = f (σea(T)) and
(2) σw( f (T)) = f (σw(T)).

Proof. Let f ∈ H(σ(T)). Since the inclusion σea( f (T)) ⊆ f (σea(T)) holds for every operator, it suffices to show
the opposite inclusion. Suppose thatλ < σea( f (T)). Then f (T)−λ is upper semi-Fredholm and i( f (T)−λ) ≤ 0.
Put

f (T) − λ = c(T − µ1)(T − µ2) · · · (T − µn)1(T),
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where c, µ1, µ2, · · · , µn ∈ C and 1(T) is invertible. We note that if A is a polynomial root of paranormal
operators, then it follows from [9, Corollary 2.10] and [1, Theorem 2.40] that it has SVEP. Hence T has
SVEP by [12, Theorem 2.1]. Since T − µi is upper semi-Fredholm, it follows from [15, Proposition 2.1] that
i(T − µi) ≤ 0 for each i = 1, 2, · · · ,n. So λ < f (σea(T)).

Now, suppose that A∗ is a polynomial root of paranormal operators. Since A∗B∗A∗ = A∗2 and B∗A∗B∗ = B∗2,
T∗ has also SVEP. So i(T − µi) ≥ 0 for each i = 1, 2, · · · ,n. From the classical index product theorem, T − µi is
Weyl for each i = 1, 2, · · · ,n. Hence λ < f (σea(T)), so that σea( f (T)) = f (σea(T)). It follows that (1) is valid.

By the same argument as above, (2) is obtained. �

Theorem 3.17. Suppose that A or A∗ is a root of paranormal operators. Then f (T) satisfies a-Browder’s
theorem for every f ∈ H(σ(T)), where T ∈ {AB,BA,B}.

Proof. If A or A∗ is a root of paranormal operators, then T or T∗ has SVEP, so that a-Browder’s theorem holds
for T. Therefore by Lemma 3.16,

σab( f (T)) = f (σab(T)) = f (σea(T)) = σea( f (T)),

for every f ∈ H(σ(T)). �

Theorem 3.18. If A∗ is a polynomial root of paranormal operators, generalized a-Weyl’s theorem holds for
T, where T ∈ {AB,BA,B}.

Proof. Suppose that A∗ is a polynomial root of paranormal operators. Suppose that λ ∈ σa(T) \ σBea(T). Then
T − λ is upper semi-B-Fredholm and i(T − λ) ≤ 0. Since A∗B∗A∗ = A∗2 and B∗A∗B∗ = B∗2, T∗ has SVEP, so
that i(T − λ) ≥ 0. Thus T − λ is B-Weyl, which implies that λ < σBW(T). Since T ∈ 1B by Theorem 3.14,
T − λ is Drazin invertible, so that λ is a pole of the resolvent of T. Hence λ ∈ iso σ(T), which implies that
λ ∈ iso σa(T). Next we show that λ is an eigenvalue of T. Assume that T−λ is injective. Since R(T−λ)p(T−λ)+1

is closed and p(T − λ) = 0, we have that T − λ has closed range. But, T − λ is not bounded below, hence this
is a contradiction. Therefore λ is an eigenvalue of T, so that λ ∈ πa

0(T).
Conversely, suppose that λ ∈ πa

0(T). Since T∗ has SVEP, λ ∈ π0(T). Hence it follows from Theorem
3.14 that T − λ is B-Weyl, so that λ ∈ σa(T) \ σBW(T). But σBea(T) ⊆ σBW(T), hence λ ∈ σa(T) \ σBea(T). Thus
πa

0(T) ⊆ σa(T) \ σBea(T). Therefore T ∈ 1aW. �

Let P0(H) denote the class of all operators T ∈ B(H) such that there exists p := p(λ) ∈N for which

H0(T − λ) = N(T − λ)p for all λ ∈ π00(T).

We construct P1(H), contained in the set P0(H), as the class of all operators T ∈ B(H) such that there exists
p := p(λ) ∈N for which

H0(T − λ) = N(T − λ)p for all λ ∈ π0(T).

An operator T ∈ B(H) is said to be algebraic if there exists a nontrivial polynomial h such that h(T) = 0.
From the spectral mapping theorem it easily follows that the spectrum of an algebraic operator is a finite
set. It is known that generalized Weyl’s theorem is not generally transmitted to perturbation of operators
satisfying generalized Weyl’s theorem. In [2], they proved that if T is paranormal and F is an algebraic
operator commuting with T, then Weyl’s theorem holds for T + F. Throughout this motive we study that
if A is a polynomial root of paranormal operators and F is an algebraic operator commuting with A and
B, then generalized Weyl’s theorem holds for T + F, where T ∈ {AB,BA,B}. We begin with the following
lemma.

Lemma 3.19. We have the following equivalences :
A ∈ P1(H)⇔ AB ∈ P1(H)⇔ BA ∈ P1(H)⇔ B ∈ P1(H).
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Proof. Suppose that A ∈ P1(H). We let T ∈ {AB,BA,B} and λ ∈ π0(T). Since ABA = A2 and BAB = B2, by
Lemma 3.13, λ ∈ π0(A). Then there exists d ∈ N such that H0(A − λ) = N(A − λ)d. Since λ ∈ iso σ(A), by [1,
Theorem 3.74], the analytic core K(A − λ) is closed and

H = K(A − λ) ⊕N(A − λ)d.

Therefore we have that
(A − λ)d(H) = K(A − λ),

which implies by [1, Theorem 3.82] that λ is a pole of the resolvent of A with order d. Hence λ is also a pole
of the resolvent of T with order d by [12, Theorem 2.11]. This means that H0(T − λ) = N(T − λ)d for some
d ∈N, so that T ∈ P1(H). It is symmetrical that the converse holds. This completes the proof. �

Theorem 3.20. Let T ∈ {AB,BA,B}. Suppose that A is a polynomial root of paranormal operators and F is
an algebraic operator commuting with A and B. Then T + F ∈ 1W.

Proof. Since A is a polynomial root of paranormal operators and F is algebraic, it is known that T + F has
SVEP from [3, Theorem 2.14]. To show that T + F ∈ 1W, we only need to prove that T + F ∈ P1(H) by
[4, Corollary 3.2]. Let λ0 ∈ π0(T + F) and σ(F) = {µ1, µ2, · · · , µn}. The spectral decomposition provides
a sequence of closed subspaces H1,H2, · · · ,Hn which are invariant under F such that H = ⊕n

i=1Hi and
σ(F|Hi) = {µi} for each i = 1, 2, · · · ,n. Suppose that Eµi (F) are the corresponding spectral projections and
Hi := R(Eµi (F)) for each i = 1, 2, · · · ,n. Since Hi = {y ∈ H : Eµi (F)y = y}, we have that Eµi (F)(yi) = yi for
arbitrary yi ∈ Hi. So if S ∈ B(H) commutes with F, then Syi = Eµi (F)(Syi) ∈ Hi. Hence Hi is invariant
under S for each i = 1, 2, · · · ,n. Now, let T ∈ {AB,BA,B}. Then TF = FT andHi is invariant under T as the
argument above for each i = 1, 2, · · · ,n. Define Fi := F|Hi, Bi := B|Hi, and Ai := A|Hi. Then AiBiAi = A2

i
and BiAiBi = B2

i . Since Ai is a polynomial root of paranormal operators, by [4, Theorem 2.8], Ai ∈ P1(Hi). It
follows from Lemma 3.19 that Ti ∈ P1(Hi) for Ti := T|Hi. So Ti + µi ∈ P1(Hi). In fact, if γ ∈ π0(Ti + µi), then
γ− µi ∈ π0(Ti). Since Ti ∈ P1(Hi), there exists a positive integer d such that H0(Ti + µi − γ) = N(Ti + µi − γ)d.
Let h be a nonconstant complex polynomial such that h(F) = 0. Then h(Fi) = h(F|Hi) = h(F)|Hi = 0. From
{0} = σ(h(Fi)) = h(σ(Fi)) = h({µi}), we have that h(µi) = 0. Write 0 = h(Fi) = (Fi − µi)m1(Fi), where 1(Fi) is
invertible. Hence Ni := Fi − µi are nilpotent for all i = 1, 2, · · · ,n. It follows from [4, Lemma 3.3] that

Ti + Fi = (Ti + µi) + (Fi − µi) = Ti + Ni + µi ∈ P1(Hi)

for every i = 1, 2, · · · ,n. Sinceλ0 ∈ π0(T+F), if we fix i ∈N such that 1 ≤ i ≤ n, then Ti+Ni−λ0+µi = Ti+Fi−λ0
holds, so that we consider two cases :
Case I : Suppose that Ti − λ0 + µi is invertible. Since Ni is a quasi-nilpotent operator commuting with
Ti − λ0 + µi, it is clear that Ti + Fi − λ0 is also invertible. Hence H0(Ti + Fi − λ0) = N(Ti + Fi − λ0) = {0}.
Case II : Suppose that Ti −λ0 +µi is not invertible. Then λ0 −µi ∈ σ(Ti). We claim that λ0 ∈ π0(Ti + Fi). Note
that λ0 ∈ σ(Ti +µi) = σ(Ti +Fi). Since σ(Ti +Fi) ⊆ σ(T +F) and λ0 ∈ iso σ(T +F), λ0 ∈ iso σ(Ti +Fi). So we only
prove that λ0 is an eigenvalue of Ti + Fi. For that, we first show that Ti + Fi −λ0 is B-Weyl. Since Ni = Fi −µi,
λ0 ∈ iso σ(Ti + Ni + µi). Therefore λ0 − µi ∈ iso σ(Ti + Ni) = iso σ(Ti), so that it follows from AiBiAi = A2

i and
BiAiBi = B2

i that λ0 − µi is an isolated point of σ(Ai). Since Ai is a polynomial root of paranormal operators,
λ0 − µi ∈ p0(Ai). This implies by σ(Ai) = σ(Ti) and σD(Ai) = σD(Ti) that λ0 − µi ∈ π0(Ti). By Theorem 3.14,
generalized Weyl’s theorem holds for Ti, which implies that λ0 − µi ∈ σ(Ti) \ σBW(Ti). But Ni is nilpotent
with TiNi = NiTi, hence σD(Ti) = σD(Ti + Ni) and Ti + Ni ∈ 1B. Therefore we have σBW(Ti + Ni) = σD(Ti + Ni).
Hence

π0(Ti) = σ(Ti) \ σBW(Ti) = σ(Ti + Ni) \ σBW(Ti + Ni).

Hence Ti + Fi − λ0 is B-Weyl. Assume that Ti + Fi − λ0 is injective. Then β(Ti + Fi − λ0) = α(Ti + Fi − λ0) = 0,
so that Ti + Fi − λ0 is invertible. But, this is a contradiction from λ0 ∈ σ(Ti + Fi). Hence λ0 is an eigenvalue
of Ti + Fi, so that λ0 ∈ π0(Ti + Fi). Since Ti + Fi ∈ P1(Hi), there exists a positive integer mi such that
H0(Ti + Fi − λ0) = N(Ti + Fi − λ0)mi .
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From Cases I and II we have

H0(T + F − λ0) =

n⊕
i=1

H0(Ti + Fi − λ0)

=

n⊕
i=1

N(Ti + Fi − λ0)mi

= N(T + F − λ0)m,

where m := max{m1,m2, · · · ,mn}. Since λ0 is arbitrary in π0(T + F), it follows that T + F ∈ P1(H). Therefore
this completes the proof. �
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